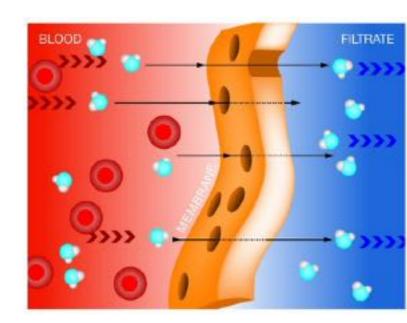


Take a decision: Dialysis

Hafez M. Bazaraa

What?



ULTRAFILTRATION

Water removal along P gradient

ULTRAFILTRATION

Water removal along P gradient

NOT JUST WATER

CONVECTION

Removal of solutes dissolved in Ultrafiltrate

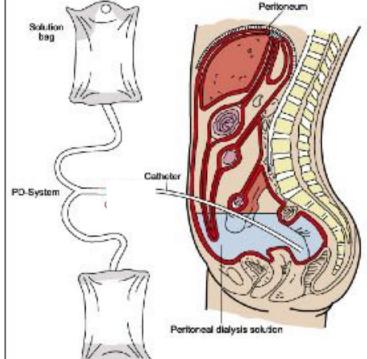
- -Dependent on uF rate
- -Larger molecule advantage

When?

- Remove solutes
- Remove water

Failure of conservative management

When?


Failure of conservative management

- Tried and unsuccessful
- Will take too long
- Strongly expected to fail
- Another clear indication

How?

Drainage bag

Principle of Peritoneal Dialysis

The decision process

Plan it prior

Problem Information Options Select **Execute Evaluate**

- What's available?
- Patient (size & condition) limits?
- Technology & expertise limits?
- Transferability?
- Risk/ cost/ benefit

- Dialysis is NOT the end of conservative management
- Dialysis supports, not replaces, patient management
- Do NOT treat dialysis as separate from patient management, even if provided by a different team/ facility/ location

•Dialysis or not?

- 12 months, anuria
- BP 60/20, HR 160, CRT 5sec
- pH 7.05 HCO₃ 4, pCO₂ 20
- Urea 90mg/dL, Creat 1.5mg/dL

- 6 yrs, 20 Kg
- Double J for obstructive anuria
- 200mL urine in 2h
- pH 7.23, HCO₃ 10 mmol/L
- 2 corrections yesterday, one immediate post-op
- Creatinine 5 mg/dL, Urea 110 mg/dL

- 18 months, anuria
- HB 5g/dL, Retics 10%, PLT 40
- Urea 180mg/dL, Creatinine 6mg/dL, K 8mmol/L

Volume, K

- 6 yrs, ESKD-HD
- Missed 2 sessions (VA failure)
- RD, orthopnea, O₂ sat 74%, BP 180/120, Chest crepitations
- Creatinine 8mg/dL

Volume

- 14 yrs
- Methyl alcohol intake 1h ago
- Conscious, creatinine 0.8mg/dL
- HCO3 20, Anion gap 12

Dialyzable toxin

- 6 Months, diarrhea & vomiting
- Severe dehydration
- Na 180mmol/L, K 2.2mmol/L, Urea 60mg/dL, creatinine 0.8mg/dL

- 6 days
- Encephalopathy
- Ammonia 400
- pH 7.37, HCO₃ 20

Metabolic

IV

- 10y
- Surgery for ruptured appendix
- Peritonitis, sepsis
- Anuria, oedema, BP 100/50 on inotropes with CVP 16
- Creatinine 4, pH 7.1, HCO₃ 6, K 7

Sepsis-AKI

V

- 6y
- Fatigue, bony pains, exertional dyspnea, growth failure
- Blood transfusion last month
- Lethargic & repeated vomiting
- Creatinine 14mg/dL, urea 300mg/dL, HCO₃ 10mmol/L, K 5mmol/L

Uremic

VI

Dialysis: Indications

- Volume/ fluid management
- Uremia (syndrome NOT Urea)
- Lab: K, acidosis, ...

Settings

- AKI
- CKD + acute
- ESKDknown or not
- Non-renal

Dialysis: Non-renal indications

SOLUTE REMOVAL

- Severe electrolyte disturbances
- Acute metabolic crisis (IEMs)
- Intoxication (dialysable agents)

Serious electrolyte disturbances

Most can be initially managed conservatively

- Potassium
- Sodium
- Calcium (,PTH & vit D)
- Magnesium
- Phosphorous
- Tumor lysis (P, K, uric a)

In-born errors

- Ammonia
- Organic acids and Ketoacids

PLASMA TV: Dialyzable Toxins

P	Phenobarbital
L	Lithium
Α	Acidosis
S	Salicylates
M	Metformin
Α	Ethanol, methanol, ethylene glycol
Т	Theophylline
V	Valproate

Digoxin is NOT DIALYZABLE

Dialysis: Non-renal indications

SOLUTE REMOVAL

- Severe electrolyte disturbances
- Acute metabolic crisis (IEMs)
- Intoxication (dialysable agents)

FLUID REMOVAL

Highly refractory HF, pulmonary oedema, oedema

Dialysis: Non-renal indications

SOLUTE REMOVAL

- Severe electrolyte disturbances
- Acute metabolic crisis (IEMs)
- Intoxication (dialysable agents)

FLUID REMOVAL DIALYSIS-LIKE THERAPIES

DIALYSIS-LIKE THERAPIES

- Cytokines in sepsis, cytokine storm (HV-HF, Oxiris)
- Liver cell failure (albumin dialysis, adsorption, PE)
- Antibodies in immune disorders (PE, adsorption)
- Refractory hypo/ hyper thermia (PD)
- Severe dyslipidemias (apheresis)

Dialysis

Part of patient support when you need to

- Remove solutes
- Remove water

Failure of conservative management

- Consider options
- Plan it prior

Q1. The principal absolute laboratory indication for dialysis is

A	sodium
В	potassium
С	urea
D	creatinine

Q2. Dialysis is UNlikely to be beneficial in cases of

A	organophoshorous poisoning with altered consciousness
В	ornithine transcarbamylase deficiency with coma
С	AKI with oliguria and fluid overload
D	tumor lysis syndrome with refractory hyperuricemia & hyperphosphatemia

Q3. The initial management of a child with hypotension, delayed capillary refill, anuria, bicarbonate 10 & K 5 is

A	immediate dialysis for AKI with acidosis
В	trial of diuretic to reverse anuria
С	normal saline bolus IV for volume expansion
D	sodium bicarbonate to correct acidosis